Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652696

RESUMO

The major product of DNA-methylating agents, N7-methyl-2'-deoxyguanosine (MdG), is a persistent lesion in vivo, but it is not believed to have a large direct physiological impact. However, MdG reacts with histone proteins to form reversible DNA-protein cross-links (DPCMdG), a family of DNA lesions that can significantly threaten cell survival. In this paper, we developed a tandem mass spectrometry method for quantifying the amounts of MdG and DPCMdG in nuclear DNA by taking advantage of their chemical lability and the concurrent release of N7-methylguanine. Using this method, we determined that DPCMdG is formed in less than 1% yield based upon the levels of MdG in methyl methanesulfonate (MMS)-treated HeLa cells. Despite its low chemical yield, DPCMdG contributes to MMS cytotoxicity. Consequently, cells that lack efficient DPC repair by the DPC protease SPRTN are hypersensitive to MMS. This investigation shows that the downstream chemical and biochemical effects of initially formed DNA damage can have significant biological consequences. With respect to MdG formation, the initial DNA lesion is only the beginning.

2.
Nucleic Acids Res ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634780

RESUMO

N6-(2-deoxy-α,ß-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido-pyrimidine (Fapy•dG) is formed from a common intermediate and in comparable amounts to the well-studied mutagenic DNA lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). Fapy•dG preferentially gives rise to G → T transversions and G → A transitions. However, the molecular basis by which Fapy•dG is processed by DNA polymerases during this mutagenic process remains poorly understood. To address this we investigated how DNA polymerase ß (Pol ß), a model mammalian polymerase, bypasses a templating Fapy•dG, inserts Fapy•dGTP, and extends from Fapy•dG at the primer terminus. When Fapy•dG is present in the template, Pol ß incorporates TMP less efficiently than either dCMP or dAMP. Kinetic analysis revealed that Fapy•dGTP is a poor substrate but is incorporated ∼3-times more efficiently opposite dA than dC. Extension from Fapy•dG at the 3'-terminus of a nascent primer is inefficient due to the primer terminus being poorly positioned for catalysis. Together these data indicate that mutagenic bypass of Fapy•dG is likely to be the source of the mutagenic effects of the lesion and not Fapy•dGTP. These experiments increase our understanding of the promutagenic effects of Fapy•dG.

3.
J Am Chem Soc ; 146(9): 6274-6282, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38393762

RESUMO

Oxidative DNA lesions cause significant detrimental effects on a living species. Two major DNA lesions resulting from dG oxidation, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo) and formamidopyrimidine (Fapy·dG), are produced from a common chemical intermediate. Fapy·dG is formed in comparable yields under oxygen-deficient conditions. Replicative bypass of Fapy·dG in human cells is more mutagenic than that of 8-OxodGuo. Despite the biological importance of transcriptional mutagenesis, there are no reports of the effects of Fapy·dG on RNA polymerase II (Pol II) activity. Here we perform comprehensive kinetic studies to investigate the impact of Fapy·dG on three key transcriptional fidelity checkpoint steps by Pol II: insertion, extension, and proofreading steps. The ratios of error-free versus error-prone incorporation opposite Fapy·dG are significantly reduced in comparison with undamaged dG. Similarly, Fapy·dG:A mispair is extended with comparable efficiency as that of the error-free, Fapy·dG:C base pair. The α- and ß-configurational isomers of Fapy·dG have distinct effects on Pol II insertion and extension. Pol II can preferentially cleave error-prone products by proofreading. To further understand the structural basis of transcription processing of Fapy·dG, five different structures were solved, including Fapy·dG template-loading state (apo), error-free cytidine triphosphate (CTP) binding state (prechemistry), error-prone ATP binding state (prechemistry), error-free Fapy·dG:C product state (postchemistry), and error-prone Fapy·dG:A product state (postchemistry), revealing distinctive nucleotide binding and product states. Taken together, our study provides a comprehensive mechanistic framework for better understanding how Fapy·dG lesions impact transcription and subsequent pathological consequences.


Assuntos
Dano ao DNA , Pirimidinas , RNA Polimerase II , Humanos , RNA Polimerase II/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Cinética , Mutagênese , Desoxiguanosina
4.
bioRxiv ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38293220

RESUMO

N6-(2-deoxy-α,ß-D-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido-pyrimidine (Fapy•dG) is formed from a common intermediate and in comparable amounts to the well-studied mutagenic DNA lesion 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo). Fapy•dG preferentially gives rise to G → T transversions and G → A transitions. However, the molecular basis by which Fapy•dG is processed by DNA polymerases during this mutagenic process remains poorly understood. To address this we investigated how DNA polymerase ß (Pol ß), a model mammalian polymerase, bypasses a templating Fapy•dG, inserts Fapy•dGTP, and extends from Fapy•dG at the primer terminus. When Fapy•dG is present in the template, Pol ß incorporates TMP less efficiently than either dCMP or dAMP. Kinetic analysis revealed that Fapy•dGTP is a poor substrate but is incorporated ∼3-times more efficiently opposite dA than dC. Extension from Fapy•dG at the 3'-terminus of a nascent primer is inefficient due to the primer terminus being poorly positioned for catalysis. Together these data indicate that mutagenic bypass of Fapy•dG is likely to be the source of the mutagenic effects of the lesion and not Fapy•dGTP. These experiments increase our understanding of the promutagenic effects of Fapy•dG.

5.
J Am Chem Soc ; 145(43): 23702-23714, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856159

RESUMO

Radical cations (holes) produced in DNA by ionizing radiation and other oxidants yield DNA-protein cross-links (DPCs). Detailed studies of DPC formation in chromatin via this process are lacking. We describe here a comprehensive examination of DPC formation within nucleosome core particles (NCPs), which are the monomeric component of chromatin. DNA holes are introduced at defined sites within NCPs that are constructed from the bottom-up. DPCs form at DNA holes in yields comparable to those of alkali-labile DNA lesions that result from water trapping. DPC-forming efficiency and site preference within the NCP are dependent on translational and rotational positioning. Mass spectrometry and the use of mutant histones reveal that lysine residues in histone N-terminal tails and amino termini are responsible for the DPC formation. These studies are corroborated by computational simulation at the microsecond time scale, showing a wide range of interactions that can precede DPC formation. Three consecutive dGs, which are pervasive in the human genome, including G-quadruplex-forming sequences, are sufficient to produce DPCs that could impact gene expression.


Assuntos
Histonas , Nucleossomos , Humanos , Histonas/química , DNA/química , Cromatina , Lisina/genética
6.
DNA Repair (Amst) ; 129: 103527, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37467631

RESUMO

Modified nucleotides often hinder and/or decrease the fidelity of DNA polymerases. Tandem lesions, which are comprised of DNA modifications at two contiguous nucleotide positions, can be even more detrimental to genome stability. Recently, tandem lesions containing 5-formyl-2'-deoxyuridine (5fdU) flanked at the 5'-position by 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo) or N-(2-deoxy-α,ß-D-erythropentofuranosyl)-N-(2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy•dG) were discovered. We examined the replication of 5'- 8-OxodGuo-5fdU and 5'-Fapy•dG-5fdU tandem lesions in HEK 293T cells and several polymerase deficient variants by transfecting single-stranded vectors containing them. The local sequence of the tandem lesions encompasses the 273 codon of the p53 gene, a mutational hot-spot. The bypass efficiency and mutation spectra of the tandem lesions were compared to those of the isolated lesions. Replication of weakly mutagenic 5-fdU is little changed when part of the 5'- 8-OxodGuo-5fdU tandem lesion. G → T transversions attributable to 8-OxodGuo increase > 10-fold when the tandem lesion is bypassed. 5'-Fapy•dG-5fdU has a synergistic effect on the error-prone bypass of both lesions. The mutation frequency (MF) of 5'-Fapy•dG-5fdU increases 3-fold compared to isolated Fapy•dG. In addition, a 5'-adjacent Fapy•dG significantly increases the MF of 5fdU. The major mutation, G → T transversions, decrease by almost a third in hPol κ- cells, which is the opposite effect when isolated Fapy•dG in the same sequence context is replicated in HEK 293T cells in the same sequence. Steady-state kinetics indicate that hPol κ contributes to greater G → T transversions by decreasing the specificity constant for dCTP compared to an isolated Fapy•dG. The greater conformational freedom of Fapy•dG compared to 8-OxodGuo and its unusual ability to epimerize at the anomeric center is believed to be the source of the complex effects of 5'-Fapy•dG-5fdU on replication.


Assuntos
DNA Polimerase Dirigida por DNA , Mutagênicos , Humanos , 8-Hidroxi-2'-Desoxiguanosina , Mutagênese , Nucleotídeos , Desoxiguanosina , Dano ao DNA
7.
ACS Chem Biol ; 18(10): 2200-2210, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37233733

RESUMO

Sterile alpha motif histidine-aspartate domain protein 1 (SAMHD1) is a deoxynucleotide triphosphohydrolase that exists in monomeric, dimeric, and tetrameric forms. It is activated by GTP binding to an A1 allosteric site on each monomer subunit, which induces dimerization, a prerequisite for dNTP-induced tetramerization. SAMHD1 is a validated drug target stemming from its inactivation of many anticancer nucleoside drugs leading to drug resistance. The enzyme also possesses a single-strand nucleic acid binding function that promotes RNA and DNA homeostasis by several mechanisms. To discover small molecule inhibitors of SAMHD1, we screened a custom ∼69 000-compound library for dNTPase inhibitors. Surprisingly, this effort yielded no viable hits and indicated that exceptional barriers for discovery of small molecule inhibitors existed. We then took a rational fragment-based inhibitor design approach using a deoxyguanosine (dG) A1 site targeting fragment. A targeted chemical library was synthesized by coupling a 5'-phosphoryl propylamine dG fragment (dGpC3NH2) to 376 carboxylic acids (RCOOH). Direct screening of the products (dGpC3NHCO-R) yielded nine initial hits, one of which (R = 3-(3'-bromo-[1,1'-biphenyl]), 5a) was investigated extensively. Amide 5a is a competitive inhibitor against GTP binding to the A1 site and induces inactive dimers that are deficient in tetramerization. Surprisingly, 5a also prevented ssDNA and ssRNA binding, demonstrating that the dNTPase and nucleic acid binding functions of SAMHD1 can be disrupted by a single small molecule. A structure of the SAMHD1-5a complex indicates that the biphenyl fragment impedes a conformational change in the C-terminal lobe that is required for tetramerization.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Ácidos Nucleicos , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Ácido Aspártico , Histidina , Motivo Estéril alfa , Guanosina Trifosfato/química , Desoxiguanosina , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo
8.
J Org Chem ; 88(11): 7381-7390, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37220149

RESUMO

A 2'-deoxycytidin-N4-yl radical (dC·), a strong oxidant that also abstracts hydrogen atoms from carbon-hydrogen bonds, is produced in a variety of DNA damaging processes. We describe here the independent generation of dC· from oxime esters under UV-irradiation or single electron transfer conditions. Support for this σ-type iminyl radical generation is provided by product studies carried out under aerobic and anaerobic conditions, as well as electron spin resonance (ESR) characterization of dC· in a homogeneous glassy solution at low temperature. Density functional theory (DFT) calculations also support fragmentation of the corresponding radical anions of oxime esters 2d and 2e to dC· and subsequent hydrogen atom abstraction from organic solvents. The corresponding 2'-deoxynucleotide triphosphate (dNTP) of isopropyl oxime ester 2c (5) is incorporated opposite 2'-deoxyadenosine and 2'-deoxyguanosine by a DNA polymerase with approximately equal efficiency. Photolysis experiments of DNA containing 2c support dC· generation and indicate that the radical produces tandem lesions when flanked on the 5'-side by 5'-d(GGT). These experiments suggest that oxime esters are reliable sources of nitrogen radicals in nucleic acids that will be useful mechanistic tools and possibly radiosensitizing agents when incorporated in DNA.


Assuntos
Ésteres , Oximas , Radicais Livres/química , Oximas/química , Elétrons , DNA/química , Hidrogênio
9.
Chem Res Toxicol ; 36(5): 782-789, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37093780

RESUMO

7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-OxodGuo) is a ubiquitous DNA damage formed by oxidation of 2'-deoxyguanosine. In this study, plasmid DNA containing 8-OxodGuo located in three mutational hot spots of human cancers, codons 248, 249, and 273 of the Tp53 tumor suppressor gene, was replicated in HEK 293T cells. 8-OxodGuo was only a weak block of replication, and the bypass was largely error-free. The mutations (1-5%) were primarily G → T transversions, and the mutation frequency was generally lower than that of the chemically related Fapy·dG. A unique 8-OxodGuo mutation spectrum was observed at each site, as reflected by replication in translesion synthesis (TLS) polymerase- or hPol λ-deficient cells. In codon 248 (CG*G) and 249 (AG*G), where G* denotes 8-OxodGuo, hPol η and hPol ζ carried out largely error-free bypass of the lesion, whereas hPol κ and hPol ι were involved mostly in error-prone TLS, resulting in G → T mutations. 8-OxodGuo bypass in codon 273 (CG*T) was unlike the other two sites, as hPol κ participated in the mostly error-free bypass of the lesion. Yet, in all three sites, including codon 273, simultaneous deficiency of hpol κ and hPol ι resulted in reduction of G → T transversions. This indicates a convincing role of these two TLS polymerases in error-prone bypass of 8-OxodGuo. Although the dominant mutation was G → T in each site, in codon 249, and to a lesser extent in codon 248, significant semi-targeted single-base deletions also occurred, which suggests that 8-OxodGuo can initiate slippage of a base near the lesion site. This study underscores the importance of sequence context in 8-OxodGuo mutagenesis in human cells. It also provides a more comprehensive comparison between 8-OxodGuo and the sister lesion, Fapy·dG. The greater mutagenicity of the latter in the same sequence contexts indicates that Fapy·dG is a biologically significant lesion and biomarker on par with 8-OxodGuo.


Assuntos
Genes p53 , Mutagênicos , Humanos , 8-Hidroxi-2'-Desoxiguanosina , Mutação , Mutagênese , Replicação do DNA , Dano ao DNA , Desoxiguanosina
10.
Biochemistry ; 62(8): 1388-1393, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36972223

RESUMO

Treatment of HeLa cells with the DNA damaging agent, bleomycin (BLM), results in the formation of a nonenzymatic 5-methylene-2-pyrrolone histone covalent modification on lysine residues (KMP). KMP is much more electrophilic than other N-acyllysine covalent modifications and post-translational modifications, including N-acetyllysine (KAc). Using histone peptides containing KMP, we show that this modification inhibits the class I histone deacetylase, HDAC1, by reacting with a conserved cysteine (C261) located near the active site. HDAC1 is inhibited by histone peptides whose corresponding N-acetylated sequences are known deacetylation substrates, but not one containing a scrambled sequence. The HDAC1 inhibitor, trichostatin A, competes with covalent modification by the KMP-containing peptides. HDAC1 is also covalently modified by a KMP-containing peptide in a complex milieu. These data indicate that peptides containing KMP are recognized by HDAC1 and are bound in the active site. The effects on HDAC1 indicate that KMP formation in cells may contribute to the biological effects of DNA damaging agents, such as BLM, that form this nonenzymatic covalent modification.


Assuntos
Dano ao DNA , Histona Desacetilase 1 , Histonas , Humanos , Acetilação , DNA/metabolismo , Células HeLa , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Histonas/metabolismo , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional
11.
Biochemistry ; 61(20): 2221-2228, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36136907

RESUMO

Positively charged N-terminal histone tails play important roles in maintaining the nucleosome (and chromatin) structure and function. Charge alteration, including those imposed by post-translational modifications, impacts chromatin dynamics, protein binding, and the fate of DNA damage. There is evidence that N-terminal histone tails affect the local ionic environment within a nucleosome core particle (NCP), but this phenomenon is not well understood. Determining the modulation of the local ionic environment within an NCP by histone tails could help uncover the underlying mechanisms of their functions and effects. Utilizing bottom-up syntheses of NCPs containing wild-type or mutated histones and a fluorescent probe that is sensitive to the local ionic environment, we show that interaction with positively charged N-terminal tails increases the local ionic strength near nucleosomal DNA. The effect is diminished by replacing positively charged residues with neutral ones or deleting a tail in its entirety. Replacing the fluorescent probe with the major DNA methylation product, N7-methyl-2'-deoxyguanosine (MdG), revealed changes in the depurination rate constant varying inversely with local ionic strength. These data indicate that the MdG hydrolysis rates depend on and also inform on local ionic strength in an NCP. Overall, histone tail charge contributes to the complexity of the NCP structure and function by modulating the local ionic strength.


Assuntos
Histonas , Nucleossomos , Cromatina , DNA/química , Desoxiguanosina/química , Corantes Fluorescentes , Histonas/metabolismo , Concentração Osmolar
12.
Chembiochem ; 23(22): e202200373, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36173930

RESUMO

An electrophilic 5-methylene-2-pyrrolone modification (KMP ) is produced at lysine residues of histone proteins in nucleosome core particles upon reaction with a commonly formed DNA lesion (C4-AP). The nonenzymatic KMP modification is also generated in the histones of HeLa cells treated with the antitumor agent, bleomycin that oxidizes DNA and forms C4-AP. This nonenzymatic covalent histone modification has the same charge as the N-acetyllysine (KAc ) modification but is more electrophilic. In this study we show that KMP -containing histone peptides are recognized by, and covalently modify bromodomain proteins that are KAc readers. Distinct selectivity preferences for covalent bromodomain modification are observed following incubation with KMP -containing peptides of different sequence. MS/MS analysis of 3 covalently modified bromodomain proteins confirmed that Cys adduction was selective. The modified Cys was not always proximal to the KAc binding site, indicating that KMP -containing peptide interaction with bromodomain protein is distinct from the former. Analysis of protein adduction yields as a function of bromodomain pH at which the protein charge is zero (pI) or cysteine solvent accessible surface area are also consistent with non-promiscuous interaction between the proteins and electrophilic peptides. These data suggest that intracellular formation of KMP could affect cellular function and viability by modifying proteins that regulate genetic expression.


Assuntos
Histonas , Espectrometria de Massas em Tandem , Humanos , Histonas/química , Células HeLa , Processamento de Proteína Pós-Traducional , DNA/metabolismo , Peptídeos/metabolismo , Dano ao DNA , Acetilação
13.
J Am Chem Soc ; 144(18): 8054-8065, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35499923

RESUMO

N6-(2-Deoxy-α,ß-d-erythro-pentofuranosyl)-2,6-diamino-4-hydroxy-5-formamido pyrimidine (Fapy•dG) is a prevalent form of genomic DNA damage. Fapy•dG is formed in greater amounts under anoxic conditions than the well-studied, chemically related 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodGuo). Fapy•dG is more mutagenic in mammalian cells than 8-oxodGuo. A distinctive property of Fapy•dG is facile epimerization, but prior works with Fapy•dG analogues have precluded determining its effect on chemistry. We present crystallographic characterization of natural Fapy•dG in duplex DNA and as the template base for DNA polymerase ß (Pol ß). Fapy•dG adopts the ß-anomer when base paired with cytosine but exists as a mixture of α- and ß-anomers when promutagenically base paired with adenine. Rotation about the bond between the glycosidic nitrogen atom and the pyrimidine ring is also affected by the opposing nucleotide. Sodium cyanoborohydride soaking experiments trap the ring-opened Fapy•dG, demonstrating that ring opening and epimerization occur in the crystalline state. Ring opening and epimerization are facilitated by propitious water molecules that are observed in the structures. Determination of Fapy•dG mutagenicity in wild type and Pol ß knockdown HEK 293T cells indicates that Pol ß contributes to G → T transversions but also suppresses G → A transitions. Complementary kinetic studies have determined that Fapy•dG promotes mutagenesis by decreasing the catalytic efficiency of dCMP insertion opposite Fapy•dG, thus reducing polymerase fidelity. Kinetic studies have determined that dCMP incorporation opposite the ß-anomer is ∼90 times faster than the α-anomer. This research identifies the importance of anomer dynamics, a feature unique to formamidopyrimidines, when considering the incorporation of nucleotides opposite Fapy•dG and potentially the repair of this structurally unusual lesion.


Assuntos
Desoxicitidina Monofosfato , Mutagênicos , 8-Hidroxi-2'-Desoxiguanosina , Animais , DNA/química , Adutos de DNA , Dano ao DNA , Replicação do DNA , Desoxicitidina Monofosfato/metabolismo , Desoxiguanosina , Cinética , Mamíferos/genética , Mamíferos/metabolismo , Mutagênese , Mutagênicos/química , Estresse Oxidativo , Pirimidinas/química
14.
J Am Chem Soc ; 144(17): 7600-7605, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35467863

RESUMO

Evaluating the significance of various forms of DNA damage is complicated by discoveries that some lesions inactivate repair enzymes or produce more deleterious forms of damage. Histone lysines within nucleosomes react with the commonly produced C4'-oxidized abasic site (C4-AP) to concomitantly yield an electrophilic modification (KMP) on lysine and DNA strand scission. We developed a chemoproteomic approach to identify KMP in HeLa cells. More than 60 000 KMP-modified histones are produced per cell. Using LC-MS/MS, we detected KMP at 17 of the 57 lysine residues distributed throughout the four core histone proteins. Therefore, KMP constitutes a DNA damage-induced, nonenzymatic histone post-translational modification. KMP formation suggests that downstream processes resulting from DNA damage could have ramifications on cells.


Assuntos
Histonas , Lisina , Bleomicina/metabolismo , Bleomicina/farmacologia , Cromatografia Líquida , Dano ao DNA , Células HeLa , Histonas/química , Humanos , Lisina/química , Nucleossomos , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem
15.
Acc Chem Res ; 55(7): 1059-1073, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35271268

RESUMO

DNA is damaged by various endogenous and exogenous sources, leading to a diverse group of reactive intermediates that yield a complex mixture of products. The initially formed products are often metastable and can react to yield lesions that are more biologically deleterious. Mechanistic studies are frequently carried out on free DNA as the substrate. The observations do not necessarily reflect the reaction environment inside human cells where genomic DNA is condensed as chromatin in the nucleus. Chromatin is made up of monomeric structural units called nucleosomes, which are comprised of DNA wrapped around an octameric core of histone proteins (two copies each of histones H2A, H2B, H3, and H4).This account presents a summary of our work in the past decade on the mechanistic studies of DNA damage and repair in reconstituted nucleosome core particles (NCPs). A series of metastable lesions and reactive intermediates, such as abasic sites (AP), N7-methyl-2'-deoxyguanosine (MdG), and 2'-deoxyadenosin-N6-yl radical (dA•), have been independently generated in a site-specific manner in bottom-up-synthesized NCPs. Detailed mechanistic studies on these NCPs revealed that histones actively participate in DNA damage and repair processes in diverse ways. For instance, nucleophilic residues in the flexible histone N-terminal tails, such as Lys and N-terminal α-amine, react with electrophilic DNA damage and reactive intermediates. In some cases, transient intermediates are produced, leading to the promotion or suppression of damage and repair processes. In other examples, reactions with histones yield reversible or stable DNA-protein cross-links (DPCs). Histones also utilize acidic and basic residues, such as histidine and aspartic acid, to catalyze DNA strand cleavage through general acid/base catalysis. Alternatively, a Tyr in histone plays a vital role in nucleosomal DNA damage and repair via radical transfer. Finally, the reactivity discovered during the mechanistic studies has facilitated the development of new reagents and methods with applications in biotechnology.This research has enriched our knowledge of the roles of histone proteins in DNA damage and repair and their contributions to epigenetics and may have significant biological implications. The residues in histone N-terminal tails that react with DNA lesions also play pivotal roles in regulating the structure and function of chromatin, indicating that there may be cross-talk between DNA damage and repair in eukaryotic cells and epigenetic regulation. Also, in view of the biased amino acid composition of histones, these results provide hints about how the proteins have evolved to minimize their deleterious effects but maximize beneficial ones for maintaining genome integrity. Finally, previously unreported DPCs and histone post-translational modifications have been discovered through this research. The effects of these newly identified lesions on the structure and function of chromatin and their fates inside cells remain to be elucidated.


Assuntos
Histonas , Nucleossomos , DNA/química , Dano ao DNA , Reparo do DNA , Epigênese Genética , Histonas/metabolismo , Humanos
18.
J Am Chem Soc ; 143(36): 14738-14747, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34467764

RESUMO

Oxidative stress produces a variety of radicals in DNA, including pyrimidine nucleobase radicals. The nitrogen-centered DNA radical 2'-deoxycytidin-N4-yl radical (dC·) plays a role in DNA damage mediated by one electron oxidants, such as HOCl and ionizing radiation. However, the reactivity of dC· is not well understood. To reduce this knowledge gap, we photochemically generated dC· from a nitrophenyl oxime nucleoside and within chemically synthesized oligonucleotides from the same precursor. dC· formation is confirmed by transient UV-absorption spectroscopy in laser flash photolysis (LFP) experiments. LFP and duplex DNA cleavage experiments indicate that dC· oxidizes dG. Transient formation of the dG radical cation (dG+•) is observed in LFP experiments. Oxidation of the opposing dG in DNA results in hole transfer when the opposing dG is part of a dGGG sequence. The sequence dependence is attributed to a competition between rapid proton transfer from dG+• to the opposing dC anion formed and hole transfer. Enhanced hole transfer when less acidic O6-methyl-2'-deoxyguanosine is opposite dC· supports this proposal. dC· produces tandem lesions in sequences containing thymidine at the 5'-position by abstracting a hydrogen atom from the thymine methyl group. The corresponding thymidine peroxyl radical completes tandem lesion formation by reacting with the 5'-adjacent nucleotide. As dC· is reduced to dC, its role in the process is traceless and is only detectable because of the ability to independently generate it from a stable precursor. These experiments reveal that dC· oxidizes neighboring nucleotides, resulting in deleterious tandem lesions and hole transfer in appropriate sequences.


Assuntos
Dano ao DNA/efeitos dos fármacos , DNA/efeitos dos fármacos , Desoxicitidina/química , Radicais Livres/química , DNA/química , Desoxicitidina/análogos & derivados , Desoxicitidina/efeitos da radiação , Desoxiguanosina/química , Oximas/química , Oximas/efeitos da radiação , Fotólise , Raios Ultravioleta
19.
DNA Repair (Amst) ; 108: 103213, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34464900

RESUMO

Fapy•dG and 8-OxodGuo are formed in DNA from a common N7-dG radical intermediate by reaction with hydroxyl radical. Although cellular levels of Fapy•dG are often greater, its effects on replication are less well understood than those of 8-OxodGuo. In this study plasmid DNA containing Fapy•dG in three mutational hotspots of human cancers, codons 248, 249, and 273 of the p53 tumor suppressor gene, was replicated in HEK 293T cells. TLS efficiencies for the Fapy•dG containing plasmids varied from 72 to 89%, and were further reduced in polymerase-deficient cells. The mutation frequency (MF) of Fapy•dG ranged from 7.3 to 11.6%, with G→T and G→A as major mutations in codons 248 and 249 compared to primarily G→T in codon 273. Increased MF in hPol ι-, hPol κ-, and hPol ζ-deficient cells suggested that these polymerases more frequently insert the correct nucleotide dC opposite Fapy•dG, whereas decreased G→A in codons 248 and 249 and reduction of all mutations in codon 273 in hPol λ-deficient cells indicated hPol λ's involvement in Fapy•dG mutagenesis. In vitro kinetic analysis using isolated translesion synthesis polymerases and hPol λ incompletely corroborated the mutagenesis experiments, indicating codependence on other proteins in the cellular milieu. In conclusion, Fapy•dG mutagenesis is dependent on the DNA sequence context, but its bypass by the TLS polymerases is largely error-free.


Assuntos
Adutos de DNA , Formamidas , Furanos , Genes p53 , Pirimidinas , Dano ao DNA , Replicação do DNA , Humanos , Cinética , Mutação , Proteína Supressora de Tumor p53/genética
20.
ACS Chem Biol ; 16(8): 1339-1343, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34240844

RESUMO

People whose cells express mutated forms of the BRCA1 tumor suppressor are at a higher risk for developing cancer. BRCA1-deficient cells are defective in DNA double-strand break repair. The inhibition of poly(ADP-ribose) polymerase 1 in such cells is a synthetically lethal, cytotoxic effect that has been exploited to produce anticancer drugs such as Olaparib. However, alternative synthetic lethal approaches are necessary. We report that DNA polymerase ß (Pol ß) forms a synthetically lethal interaction with BRCA1. The SiRNA knockdown of Pol ß or the treatment with a Pol ß pro-inhibitor (pro-1) is cytotoxic in BRCA1-deficient ovarian cancer cells. BRCA1-complemented cells are significantly less susceptible to either treatment. pro-1 is also toxic to BRCA1-deficient breast cancer cells, and its toxicity in BRCA1-deficient cells is comparable to that of Olaparib. These experiments establish Pol ß as a synthetically lethal target within BRCA1-deficient cells and a potentially useful one for treating cancer.


Assuntos
Antineoplásicos/farmacologia , Proteína BRCA1/deficiência , DNA Polimerase beta/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , DNA Polimerase beta/genética , Técnicas de Silenciamento de Genes , Inativação Gênica/efeitos dos fármacos , Humanos , Camundongos , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , RNA Interferente Pequeno/farmacologia , Nucleotídeos de Timina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...